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Introduction: derived topologies and hyperstationary sets

Provability Logic

Provability Logic is the logic in the language of propositional logic with an
additional modal operator 2.

Axioms:
1 Boolean tautologies.
2 2(ϕ→ ψ)→ (2ϕ→ 2ψ)
3 2(2ϕ→ ϕ)→ 2ϕ

Rules:
1 ` ϕ, ` ϕ→ ψ ⇒ ` ψ (Modus Ponens)
2 ` ϕ ⇒ ` 2ϕ (Necessitation)
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Introduction: derived topologies and hyperstationary sets

The Logic GLPω

One may introduce additional modal operators [n], for each n < ω. The
corresponding dual operators ¬[n]¬ are denoted by 〈n〉. The logic system
GLPω (Japaridze, 1986) has the following axioms and rules:

Axioms:
1 Boolean tautologies.
2 [n](ϕ→ ψ)→ ([n]ϕ→ [n]ψ), for all n < ω.
3 [n]([n]ϕ→ ϕ)→ [n]ϕ, for all n < ω.
4 [m]ϕ→ [n]ϕ, for all m < n < ω.
5 〈m〉ϕ→ [n]〈m〉ϕ, for all m < n < ω.

Rules:
1 ` ϕ, ` ϕ→ ψ ⇒ ` ψ (Modus Ponens)
2 ` ϕ ⇒ ` [n]ϕ, for all n < ω (Necessitation)
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Introduction: derived topologies and hyperstationary sets

The Logic GLPξ

More generally, for any ordinal ξ ≥ 2, one considers the language of
propositional logic with additional modal operators [α], for each α < ξ.
The corresponding dual operators ¬[α]¬ being denoted by 〈α〉. The logic
system GLPξ has the following axioms and rules:

Axioms:
1 Boolean tautologies.
2 [α](ϕ→ ψ)→ ([α]ϕ→ [α]ψ), for all α < ξ.
3 [α]([α]ϕ→ ϕ)→ [α]ϕ, for all α < ξ.
4 [β]ϕ→ [α]ϕ, for all β < α < ξ.
5 〈β〉ϕ→ [α]〈β〉ϕ, for all β < α < ξ.

Rules:
1 ` ϕ, ` ϕ→ ψ ⇒ ` ψ (Modus Ponens)
2 ` ϕ ⇒ ` [α]ϕ, for all α < ξ (Necessitation)
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Introduction: derived topologies and hyperstationary sets

Topological semantics

People have been interested in proving completeness for GLPξ, with
respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for GLPξ with respect to
topological semantics.
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Introduction: derived topologies and hyperstationary sets

Topological semantics

Thus, one considers polytopological spaces (X , (τα)α<ξ).

A valuation on X is a map v : Form→ P(X ) such that:
1 v(¬ϕ) = X − v(ϕ)
2 v(ϕ ∧ ψ) = v(ϕ) ∩ v(ψ)
3 v(〈α〉ϕ) = Dα(v(ϕ)), for all α < ξ, where Dα : P(X )→ P(X ) is the

derived set operator for τα (i.e., Dα(A) is the set of limit points of A
in the τα topology).
Hence, v([α]ϕ) = X − Dα(X − v(ϕ)) = the τα-interior of v(ϕ), for
all α < ξ.

A formula is valid in X if v(ϕ) = X , for every valuation v on X .
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Introduction: derived topologies and hyperstationary sets

Topological semantics

For the GLPξ axioms to be valid in (X , (τα)α<ξ), the topologies τα have
to satisfy:

1 τα is scattered, all α < ξ.
2 τβ ⊆ τα, for all β ≤ α < ξ.
3 Dα(A) is an open set in τα+1, for all A ⊆ X .

Moreover, for GLPξ to be complete, one must also have:
4 The τα are non-trivial (i.e., non discrete).

So, one doesn’t have much choice on how to define the τα: One fixes a
scattered topology τ0 on X , and the other topologies are determined by
the Dα operators. One only needs to make sure the τα are non-trivial.

Such polytopological spaces are called general GLP-spaces.
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Introduction: derived topologies and hyperstationary sets

Ordinal GLP-spaces

Fix some limit ordinal δ (we also allow δ = OR).

Recall that the order topology on δ (a. k. a. the interval topology) is the
topology τ0 generated by the set B0 consisting of {0} and the intervals
(α, β).

τ0 is a Hausdorff scattered topology in which 0 and all successor ordinals
are isolated points, and the accumulation points are precisely the limit
ordinals.

Now define a continuous sequence of derived topologies

τ0 ⊆ τ1 ⊆ . . . ⊆ τξ ⊆ . . .

as follows:
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

Given τξ, let Dξ : P(δ)→ P(δ) be the Cantor derivative operator:

Dξ(A) := {α ∈ δ : α is a limit point of A in the τξ topology}.

Note that Dξ(A) is a closed set in the τξ topology.

Then let τξ+1 be the topology generated by the set

Bξ+1 := Bξ ∪ {Dξ(A) : A ⊆ δ}.
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

Notice that if the cofinality of α is uncountable and α ∈ D0(A), then
D0(A) ∩ α is a club subset of α.

The set B1 := B0 ∪ {D0(A) : A ⊆ δ} is a base for the topology τ1 on OR,
known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable
cofinality.

Fact
For every set of ordinals A,

D1(A) = {α : A ∩ α is stationary in α}.
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Introduction: derived topologies and hyperstationary sets

Derived Topologies

The next topology, τ2, is generated by the set

B2 := B1 ∪ {D1(A) : A ⊆ OR}.

If some stationary subset S of α does not reflect (i.e., D1(S) = {α}), then
α is an isolated point of τ2. Thus, every non-isolated point α has to reflect
all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect
(i.e., D1(S)∩D1(T ) = {α}), then α is an isolated point of τ2. Thus, every
non-isolated point has to reflect simultaneously all pairs of stationary sets.
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Introduction: derived topologies and hyperstationary sets

Stationary reflection

An ordinal α of uncountable cofinality reflects stationary sets if for every
stationary A ⊆ α there exists β < α such that A ∩ β is stationary in β.

Let us say that an ordinal α of uncountable cofinality is
simultaneoulsy-stationary-reflecting if every pair A,B of stationary subsets
of α simultaneously reflect, that is, there exists β < α such that A∩ β and
B ∩ β are both stationary in β.
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Introduction: derived topologies and hyperstationary sets

Jensen’s Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π1
1-indescribable)

is simultaneously-stationary-reflecting.

Theorem (Jensen)
In the constructible universe L a regular cardinal κ reflects stationary sets
if and only if it is Π1

1-indescribable, hence if and only if it is
simultaneously-stationary-reflecting.a

aR. Jensen, The fine structure of the constructible hierarchy. Annals of
Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology τ2 are precisely the
ordinals whose cofinality is a weakly-compact cardinal.
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Introduction: derived topologies and hyperstationary sets

Moreover,

Theorem (Magidor)
If κ is regular and reflects simultaneously pairs of stationary subsets, then
κ is a weakly compact cardinal in L.a

aM. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of τ2 is a
weakly compact cardinal.
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Introduction: derived topologies and hyperstationary sets

ξ-stationary sets

Definition

We say that A ⊆ δ is 0-stationary in α, α a limit ordinal, if and only if
A ∩ α is unbounded in α.
For ξ > 0, we say that A is ξ-stationary in α if and only if for every ζ < ξ,
every subset S of α that is ζ-stationary in α ζ-reflects to some β ∈ A, i.e.,
S ∩ β is ζ-stationary in β.

Note:
1 A is 1-stationary in α ⇔ A is stationary in α, in the usual sense.
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Lecture II
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Introduction: derived topologies and hyperstationary sets

Recall from Lecture I

We are looking at ordinal GLP-spaces, i.e., polytopological spaces of the
form (δ, (τζ)ζ<ξ), where τ0 is the interval topology and τζ+1 is generated
by τζ together with the sets

Dζ(A) := {α : α is a τζ limit point of A}

all A ⊆ δ.

τ1 is the club topology. The non-isolated points are those α with
uncountable cofinality.

We observed that D1(A) = {α : A ∩ α is stationary in α}.
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Introduction: derived topologies and hyperstationary sets

Recall also the following definition

Definition
We say that A ⊆ δ is 0-simultaneously-stationary in α (0-s-stationary in α,
for short) if and only if A ∩ α is unbounded in α.
For ξ > 0, we say that A ⊆ δ is ξ-simultaneously-stationary in α
(ξ-s-stationary in α, for short) if and only for every ζ < ξ, every pair of
ζ-s-stationary subsets B,C ⊆ α simultaneously ζ-s-reflect at some β ∈ A,
i.e., B ∩ β and C ∩ β are ζ-s-stationary in β.

A is 2-s-stationary in α ⇔ every pair of stationary subsets of α
simultaneously reflect to some β ∈ A.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 20 / 56



Introduction: derived topologies and hyperstationary sets

Recall also the following definition

Definition
We say that A ⊆ δ is 0-simultaneously-stationary in α (0-s-stationary in α,
for short) if and only if A ∩ α is unbounded in α.
For ξ > 0, we say that A ⊆ δ is ξ-simultaneously-stationary in α
(ξ-s-stationary in α, for short) if and only for every ζ < ξ, every pair of
ζ-s-stationary subsets B,C ⊆ α simultaneously ζ-s-reflect at some β ∈ A,
i.e., B ∩ β and C ∩ β are ζ-s-stationary in β.

A is 2-s-stationary in α ⇔ every pair of stationary subsets of α
simultaneously reflect to some β ∈ A.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 20 / 56



Introduction: derived topologies and hyperstationary sets

Recall also the following definition

Definition
We say that A ⊆ δ is 0-simultaneously-stationary in α (0-s-stationary in α,
for short) if and only if A ∩ α is unbounded in α.
For ξ > 0, we say that A ⊆ δ is ξ-simultaneously-stationary in α
(ξ-s-stationary in α, for short) if and only for every ζ < ξ, every pair of
ζ-s-stationary subsets B,C ⊆ α simultaneously ζ-s-reflect at some β ∈ A,
i.e., B ∩ β and C ∩ β are ζ-s-stationary in β.

A is 2-s-stationary in α ⇔ every pair of stationary subsets of α
simultaneously reflect to some β ∈ A.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 20 / 56



Introduction: derived topologies and hyperstationary sets

Proposition
α is not isolated in the τ2 topology if and only if α is 2-s-stationary

Proof.
If α is not 2-s-stationary, there are stationary A,B ⊆ α such that
D1(A) ∩ D1(B) = {α}, hence α is isolated.
Now suppose α is 2-s-stat. and α ∈ U = C ∩ D1(A0) ∩ . . . ∩ D1(An−1),
where C ⊆ α is club. We claim that U contains some ordinal other than
α. It is enough to show that D1(A0) ∩ . . . ∩ D1(An−1) is stationary.
Suppose first that n = 2. Fix any club C ′ ⊆ α. The sets C ′ ∩ A0 and
C ′ ∩ A1 are stationary in α, and therefore they simultaneously reflect at
some β < α. Thus β ∈ C ′ ∩ D1(A0) ∩ D1(A1).
Now, assume it holds for n and let us show it holds for n + 1. Fix a club
C ′ ⊆ α. By the ind. hyp., C ′ ∩ D1(A0) ∩ . . . ∩ D1(An−1) is stationary. So,
since the proposition holds for n = 2, the set
D1(C ′ ∩ D1(A0) ∩ . . . ∩ D1(An−1)) ∩ D1(An) is also stationary. But clearly
D1(C ′ ∩D1(A0)∩ . . .∩D1(An−1))∩D1(An) ⊆ C ′ ∩D1(A0)∩ . . .∩D1(An).
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A similar argument, relativized to any set A yields:

Proposition
D2(A) = {α : A ∩ α is 2-s-stationary in α}.
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Introduction: derived topologies and hyperstationary sets

The τξ topology

In order to analyse the topologies τξ, for ξ ≥ 3, note first the following
general facts:

1 For every ξ′ < ξ and every A,B ⊆ δ,

Dξ′(A) ∩ Dξ(B) = Dξ(Dξ′(A) ∩ B).

2 For every ordinal ξ, the sets of the form

I ∩ Dξ′(A0) ∩ . . . ∩ Dξ′(An−1)

where I ∈ B0, n < ω, ξ′ < ξ, and Ai ⊆ δ, all i < n, form a base for τξ.
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Characterizing non-isolated points

Theorem

1 For every ξ,

Dξ(A) = {α : A is ξ-s-stationary in α}.a

2 For every ξ and α, A is ξ + 1-s-stationary in α if and only if
A ∩ Dζ(S) ∩ Dζ(T ) ∩ α 6= ∅ (equivalently, if and only if
A ∩ Dζ(S) ∩ Dζ(T ) is ζ-s-stationary in α) for every ζ ≤ ξ and every
pair S, T of subsets of α that are ζ-s-stationary in α.

3 For every ξ and α, if A is ξ-s-stationary in α and Ai is ζi -s-stationary
in α for some ζi < ξ, all i < n, then A ∩ Dζ0(A0) ∩ . . . ∩ Dζn−1(An−1)
is ξ-s-stationary in α.

aFor ξ < ω, this is due independently to L. Beklemishev (Unpublished).
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Taking A = δ in (1) above, we obtain the following

Corollary

For every ξ, an ordinal α < δ is not isolated in the τξ topology if and only
if α is ξ-s-stationary.
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Introduction: derived topologies and hyperstationary sets

The ideal of non-ξ-s-stationary sets

For each limit ordinal α and each ξ, let NSξα be the set of
non-ξ-s-stationary subsets of α.

Thus, if α has uncountable cofinality, NS1
α is the ideal of non-stationary

subsets of α and (NS1
α)∗ is the club filter over α.

Notice that ζ ≤ ξ implies NSζα ⊆ NSξα and (NSζα)∗ ⊆ (NSξα)∗.

Also note that A ⊆ α belongs to (NSξα)∗ if and only if for some ζ < ξ and
some ζ-s-stationary sets S,T ⊆ α, the set Dζ(S)∩Dζ(T )∩α is contained
in A. In particular, if S ⊆ α is ζ-s-stationary, with ζ < ξ, then
Dζ(S) ∩ α ∈ (NSξα)∗.
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Theorem
For every ξ, a limit ordinal α is ξ-s-stationary if and only if NSξα is a proper
ideal, hence if and only if (NSξα)∗ is a proper filter.
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Proof.
Assume α is ξ-s-stationary (hence α 6∈ NSξα) and let us show that NSξα is
an ideal. For ξ = 0 this is clear. So, suppose ξ > 0 and A,B ∈ NSξα.
There exist ζA, ζB < ξ, and there exist sets SA,TA ⊆ α that are
ζA-s-stationary in α, and sets SB,TB ⊆ α that are ζB-s-stationary in α,
such that DζA(SA) ∩ DζA(TA) ∩ A = DζB (SB) ∩ Dζb (TB) ∩ B = ∅. Hence,

(DζA(SA) ∩ DζA(TA) ∩ DζB (SB) ∩ DζB (TB)) ∩ (A ∪ B) = ∅.

The set X := DζA(SA) ∩ DζA(TA) ∩ DζB (SB) ∩ DζB (TB) is
max{ζA, ζB}-s-stationary in α. Now notice that

Dmax{ζA,ζB}(X ) ⊆ X

and so we have
Dmax{ζA,ζB}(X ) ∩ α ∩ (A ∪ B) = ∅

which witnesses that A ∪ B ∈ NSξα.
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Continued.
For the converse, assume NSξα is a proper ideal.
Take any A and B ζ-s-stationary subsets of α, for some ζ < ξ. Then
Dζ(A) ∩ α and Dζ(B) ∩ α are in (NSξα)∗. Moreover, if S,T ⊆ α are any
ζ ′-s-stationary sets, for some ζ ′ < ξ, then also Dζ′(S) ∩ α and Dζ′(T ) ∩ α
belong to (NSξα)∗. Hence, since (NSξα)∗ is a filter,

Dζ(A) ∩ Dζ(B) ∩ Dζ′(S) ∩ Dζ′(T ) ∩ α ∈ (NSξα)∗

which implies, since (NSξα)∗ is proper, that
Dζ(A) ∩ Dζ(B) ∩ Dζ′(S) ∩ Dζ′(T ) ∩ α 6= ∅. This shows that
Dζ(A) ∩ Dζ(B) is ξ-s-stationary in α. Since A and B were arbitrary, this
implies α is ξ-s-stationary.
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Summary

The following are equivalent for every limit ordinal α and every ξ > 0:

1 α is a non-isolated point in the τξ topology.

2 α is ξ-s-stationary.

3 NSξα is a proper ideal.
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Hyperstationary sets and indescribable cardinals

Indescribable cardinals

Recall that a formula of second-order logic is Σ1
0 (or Π1

0) if it does not
have quantifiers of second order, but it may have any finite number of
first-order quantifiers and free first-order and second-order variables.

Definition
For ξ any ordinal, we say that a formula is Σ1

ξ+1 if it is of the form

∃X0, . . . ,Xkϕ(X0, . . . ,Xk)

where ϕ(X0, . . . ,Xk) is Π1
ξ .

And a formula is Π1
ξ+1 if it is of the form

∀X0, . . . ,Xkϕ(X0, . . . ,Xk)

where ϕ(X0, . . . ,Xk) is Σ1
ξ .
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∃X0, . . . ,Xkϕ(X0, . . . ,Xk)

where ϕ(X0, . . . ,Xk) is Π1
ξ .

And a formula is Π1
ξ+1 if it is of the form

∀X0, . . . ,Xkϕ(X0, . . . ,Xk)

where ϕ(X0, . . . ,Xk) is Σ1
ξ .
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Hyperstationary sets and indescribable cardinals

Definition
If ξ is a limit ordinal, then we say that a formula is Π1

ξ if it is of the form∧
ζ<ξ

ϕζ

where ϕζ is Π1
ζ , all ζ < ξ, and it has only finitely-many free second-order

variables. And we say that a formula is Σ1
ξ if it is of the form∨

ζ<ξ

ϕζ

where ϕζ is Σ1
ζ , all ζ < ξ, and it has only finitely-many free second-order

variables.
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Hyperstationary sets and indescribable cardinals

Definition
A cardinal κ is Π1

ξ-indescribable if for all subsets A ⊆ Vκ and every Π1
ξ

sentence ϕ, if
〈Vκ,∈,A〉 |= ϕ

then there is some λ < κ such that

〈Vλ,∈,A ∩ Vλ〉 |= ϕ.
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Hyperstationary sets and indescribable cardinals

Theorem

Every Π1
ξ-indescribable cardinal is (ξ + 1)-s-stationary. Hence, if ξ is a

limit ordinal and a cardinal κ is Π1
ζ-indescribable for all ζ < ξ, then κ is

ξ-s-stationary.
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Hyperstationary sets and indescribable cardinals

Proof.
Let κ be an infinite cardinal. Clearly, the fact that a set A ⊆ κ is
0-s-stationary (i.e., unbounded) in κ can be expressed as a Π1

0 sentence
ϕ0(A) over 〈Vκ,∈,A〉. Inductively, for every ξ > 0, the fact that a set
A ⊆ κ is ξ-s-stationary in κ can be expressed by a Π1

ξ sentence ϕξ over
〈Vκ,∈,A〉. Namely, ∧

ζ<ξ

(A is ζ-s-stationary)

in the case ξ is a limit ordinal, and by the sentence∧
ζ<ξ−1

(A is ζ-s-stationary) ∧

∀S,T (S,T are (ξ − 1)-s-stationary in κ→

∃β ∈ A(S and T are (ξ − 1)-s-stationary in β))

which is easily seen to be equivalent to a Π1
ξ sentence, in the case ξ is a

successor ordinal.
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Hyperstationary sets and indescribable cardinals

Continued.
Now suppose κ is Π1

ξ-indescribable, and suppose that A and B are
ζ-s-stationary subsets of κ, for some ζ ≤ ξ. Thus,

〈Vκ,∈,A,B〉 |= ϕζ [A] ∧ ϕζ [B].

By the Π1
ζ-indescribability of κ there exists β < κ such that

〈Vβ,∈,A ∩ β,B ∩ β〉 |= ϕζ [A ∩ β] ∧ ϕζ [B ∩ β]

which implies that A and B are ζ-s-stationary in β. Hence κ is
(ξ + 1)-s-reflecting.
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Hyperstationary sets and indescribable cardinals

Reflection and indescribability in L

Theorem (J.B.-M. Magidor-H. Sakai, 2013; J.B., 2015)

Assume V = L. For every ξ > 0, a regular cardinal is (ξ + 1)-stationary if
and only if it is Π1

ξ-indescribable, hence if and only if it is
(ξ + 1)-s-stationary.ab

aReflection and indescribability in the constructible universe. Israel J. of
Math. Vol. 208, Issue 1 (2015)

bDerived topologies on ordinals and stationary reflection. Preprint (2015)
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Hyperstationary sets and indescribable cardinals

The proof actually shows the following:

Theorem

Assume V = L. Suppose ξ > 0 and κ is a regular (ξ + 1)-stationary
cardinal. Then for every A ⊆ κ and every Π1

ξ sentence Ψ, if
〈Lκ,∈,A〉 |= Ψ, then there exists a ξ-stationary S ⊆ κ such that Ψ reflects
to every ordinal λ on which S is ξ-stationary.
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Hyperstationary sets and indescribable cardinals

Theorem
CON( ∃κ < λ (κ is Π1

ξ-indescribable ∧ λ is inaccessible)) implies
CON(τξ+1 is non-discrete ∧ τξ+2 is discrete).

Proof.
Let κ be Π1

ξ-indescribable, and let λ > κ be inaccessible. In L, κ is
Π1
ξ-indescribable and λ is inaccessible. So, in L, let κ0 be the least

Π1
ξ-indescribable cardinal, and let λ0 be the least inaccessible cardinal

above κ0. Then Lλ0 is a model of ZFC in which κ0 is Π1
ξ-indescribable and

no regular cardinal greater than κ0 is 2-stationary. The reason is that if α
is a regular cardinal greater than κ0, then α = β+, for some cardinal β.
And since Jensen’s principle �β holds, there exists a stationary subset of α
that does not reflect.
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Hyperstationary sets and indescribable cardinals

Lecture III
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Hyperstationary sets and indescribable cardinals

Recall from Lecture II

If V = L, then the following are equivalent for every regular cardinal κ and
ξ > 0:

1 κ if (ξ + 1)-stationary.

2 κ is (ξ + 1)-s-stationary.

3 κ is Π1
ξ-indescribable.

Hence, for every limit ordinal ξ, a regular cardinal is ξ-stationary if and
only if it is ξ-s-stationary, and if and only if it is Π1

ζ-indescribable for every
ζ < ξ.

Question
What is the consistency strength of ξ-stationarity? And of ξ-s-stationarity?
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Hyperstationary sets and indescribable cardinals

The consistency strength of 2-stationarity

Let us write:

dξ(A) := {α : A ∩ α is ξ-stationary in α}

Definition (A. H. Mekler-S. Shelah, 1989)
A regular uncountable cardinal κ is a reflection cardinal if there exists a
reflection ideal on κ, i.e., a proper, normal, and κ-complete ideal I on κ
such that for every X ⊆ κ,

X ∈ I+ ⇒ d1(X ) ∈ I+.

Note: if κ is 2-stationary, then NSκ is the smallest such ideal.
κ is weakly compact ⇒ many reflection cardinals below κ.
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The consistency strength of hyperstationarity

The consistency strength of 2-stationarity

Theorem (A. H. Mekler-S. Shelah, 1989)
If κ is a reflection cardinal in L, then in some generic extension of L that
preserves cardinals, κ is 2-stationary. (In fact, the set Reg ∩ κ of regular
cardinals below κ is 2-stationary.)

Corollary
The following are equiconsistent:

1 There exists a reflection cardinal.
2 There exists a 2-stationary cardinal.
3 There exists a regular cardinal κ such that every κ-free abelian group

is κ+-free.
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The consistency strength of hyperstationarity

On the consistency strength of 2-stationarity

Definition
A regular cardinal κ is greatly Mahlo if there exists a proper, normal, and
κ-complete ideal I on κ such that Reg ∩ κ ∈ I∗, and for every X ⊆ κ,

X ∈ I∗ ⇒ d1(X ) ∈ I∗.

Theorem (A. H. Mekler-S. Shelah, 1989)
If V = L and κ is at most the first greatly-Mahlo cardinal, then κ is not a
reflection cardinal.

Thus, in L, the first reflection cardinal is strictly between the first
greatly-Mahlo and the first weakly-compact.
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The consistency strength of hyperstationarity

On the consistency strength of ξ-stationarity

We would like to prove analogous results for ξ-stationay sets. So, let’s
define:

Definition
For ξ > 0, a regular uncountable cardinal κ is an ξ-reflection cardinal if
there exists a ξ-reflection ideal on κ, i.e., a proper, normal, and
κ-complete ideal I on κ such that for every X ⊆ κ,

X ∈ I+ ⇒ dξ(X ) ∈ I+.

Note: κ is 2-stationary if and only if NSκ is a 1-reflection ideal. Thus,
every 2-stationary regular cardinal is a 1-reflection cardinal.
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The consistency strength of hyperstationarity

Proposition

Every Π1
ξ-indescribable cardinal is a (ξ + 1)-reflection cardinal.

Proof.
If κ is Π1

ξ-indescribable, then NSξ+1
κ is a (ξ + 1)-reflection ideal. The point

is that if κ is Π1
ξ-indescribable, then (NSξ+1

κ )∗ is contained in the
(ξ + 1)-indescribable filter, and hence it is normal.

However,

Proposition
For every ξ > 0, the fact that κ is a ξ-reflection cardinal is Π1

1 expressible
over the structure 〈Vκ,∈, ξ, κ〉. Hence, if κ is a ξ-reflection cardinal and is
weakly compact, then the set of ξ-reflection cardinals smaller than κ
belongs to the weakly compact filter.
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The consistency strength of hyperstationarity

On the consistency strength of ξ-stationarity

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)
If κ is a ξ-reflection cardinal in L, then in some generic extension of L that
preserves cardinals, κ is (ξ + 1)-stationary.
(In fact, the set Reg ∩ κ of regular cardinals below κ is (ξ + 1)-stationary).
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The consistency strength of hyperstationarity

Problem

Suppose S is a subset of κ that does not 2-reflect, i.e., d2(S) = ∅. Then
T := S ∪{α < κ : cof (α) = ω} does not 2-reflect either: for if α ∈ d2(T ),
then since α 6∈ d2(S) there exists X ⊆ α i-stationary, some i < 2, such
that di (X ) ∩ S ∩ α = ∅. If i = 0, then di (X ) ∩ α is a club subset of α
disjoint from S, and therefore di (X ) ∩ T ∩ α is a 2-stationary subset of α
contained in {β < α : cof (β) = ω}, which is impossible. But if i = 1, then
di (X ) ∩ T ∩ α = di (X ) ∩ S ∩ α = ∅, contradicting α ∈ d2(T ).
Now, if we shoot a club through the complement of T , then in V [G ] the
club contains ordinals of cofinality ω but whose cofinality in V is
uncountable. Hence cardinals are collapsed.
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The consistency strength of hyperstationarity

Definition
For κ an uncountable regular cardinal, S ⊆ κ, and ξ > 0, let Dξ,S be the
forcing notion whose conditions are functions

p : δ + 1→ {0, 1}

where δ < κ and p−1[{1}] is not ξ-stationary in α for every α ∈ S, i.e.,
dξ(p−1[{1}]) ⊆ κ \ S. The ordering is by end-extension, i.e., p ≤ q if and
only if p is an end-extension of q.

Lemma

Dξ,S is < κ-distributive.
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The consistency strength of hyperstationarity

Lemma

Suppose that H is Dξ,S-generic over V and let

XH :=
⋃
{p−1[{1}] : p ∈ H}.

Then XH is a stationary subset of κ and dξ(XH) ∩ κ ⊆ κ \ S.

Joan Bagaria (ICREA & UB) An Introduction to Hyperstationary Sets 50 / 56



The consistency strength of hyperstationarity

The iteration

We do an iteration P, of length κ+, with support of size < κ, and such
that at every successor stage α, if the subset S of κ given by the
bookkeeping function is a stationary set that does not reflect, then the
forcing Q̇α shoots a club through the complement of S; and if S is a
stationary set such that dζ(S) 6= ∅ but dζ+1(S) = ∅, some 0 < ζ ≤ ξ, then
Q̇α adds a set of the form dζ(X ), with X stationary, through the
complement of S. Moreover, we destroy at later stages of the iteration all
potential counterexamples to X being ζ-stationary
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The consistency strength of hyperstationarity

On the consistency strength of n-stationarity

Definition
A regular cardinal κ is ξ-greatly Mahlo if there exists a proper, normal, and
κ-complete ideal I on κ such that Reg ∩ κ ∈ I∗, and for every X ⊆ κ,

X ∈ I∗ ⇒ dξ(X ) ∈ I∗.

Theorem (J.B. and S. Mancilla, 2014)
In L, if κ is at most the first ξ-greatly-Mahlo cardinal, then κ is not an
ξ-reflection cardinal.
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The consistency strength of hyperstationarity

Conclusion

Corollary
The consistency strength of the existence of an (ξ + 1)-stationary cardinal
is strictly between the existence of a ξ-greatly-Mahlo cardinal and the
existence of a Π1

ξ-indescribable cardinal.
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The consistency strength of hyperstationarity

On the consistency strength of ξ-s-stationarity.

Theorem (Magidor)
The following are equiconsistent:

1 There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects
simultaneously pairs of stationary sets).

2 There exists a weakly-compact cardinal.a

aM. Magidor, On reflecting stationary sets. JSL 47 (1982)

Conjecture
The following should be equiconsistent for every ξ > 0:

1 There exists an (ξ + 1)-s-stationary cardinal.
2 There exists an Π1

ξ-indescribable cardinal.
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Potential applications and Open Questions

The GLP completeness problem

In order to solve the GLP completeness problem under ordinal topological
semantics it only remains to prove the following:

Theorem (?)

Assume whatever you need (e.g., large cardinals, global square, ...). For
ξ > 1 and some κ, for every finite rooted tree 〈T ,≤T 〉, there exists a
function S : T → P(κ) \ {∅} such that

1 {Sx : x ∈ T} is pairwise disjoint.
2 If x <T y and α ∈ Sx , then Sy ∩ α ∈ (NSξα)+.
3 For every x ∈ T, if α ∈ Sx , then (

⋃
x<T y Sy ) ∩ α ∈ (NSξα)∗.
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Potential applications and Open Questions

Open for exploration

1 Develop the theory of hyperstationary sets for Pκ(λ). What are the
large cardinals involved?

2 Define the hyperstationary version of Woodin’s stationary tower and
study its properties.

3 Characterize the non-isolated points of general GLP-spaces. What
are the large cardinals involved?

4 What is the notion of almost-freeness for abelian groups that
corresponds (i.e., is equiconsistent) to ξ-stationarity?

5 Take any result about stationary sets and prove it or disprove it for
hyperstationary sets (assuming appropriate large cardinals).
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