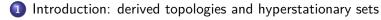
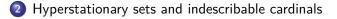
An Introduction to Hyperstationary Sets

Joan Bagaria

Winter School in Abstract Analysis 2017 section Set Theory & Topology Hejnice, Czech Republic, Jan 28 - Feb 4, 2017





- 3 The consistency strength of hyperstationarity
- 4 Potential applications and Open Questions

- 4 同 ト 4 ヨ ト 4 ヨ ト

Provability Logic

Provability Logic is the logic in the language of propositional logic with an additional modal operator \Box .

Axioms:

Boolean tautologies.

- $(\Box \varphi \to \varphi) \to \Box \varphi$

Rules:

・ロト ・ 一下 ・ ト ・ ト ・ ト

Provability Logic

Provability Logic is the logic in the language of propositional logic with an additional modal operator \Box .

Axioms:

- Boolean tautologies.
- $(\Box \varphi \to \varphi) \to \Box \varphi$

Rules:

・ロト ・ 一日 ・ ・ 日 ・ ・ 日 ・

Provability Logic

Provability Logic is the logic in the language of propositional logic with an additional modal operator \Box .

Axioms:

- Boolean tautologies.
- $(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)$
- $(\Box \varphi \to \varphi) \to \Box \varphi$

Rules:

- $\bullet \vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi \text{ (Modus Ponens)}$

The Logic \mathbf{GLP}_{ω}

One may introduce additional modal operators [n], for each $n < \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system **GLP**_{ω} (Japaridze, 1986) has the following axioms and rules:

Axioms:

Boolean tautologies.

- $\ \ \, {\it O} \ \, [n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi), \ \, {\it for \ all \ } n < \omega.$
- $[n]([n]\varphi \to \varphi) \to [n]\varphi, \text{ for all } n < \omega.$

()
$$[m]\varphi \rightarrow [n]\varphi$$
, for all $m < n < \omega$.

 $(m)\varphi \to [n]\langle m\rangle\varphi, \text{ for all } m < n < \omega.$

Rules:

② $\vdash \varphi \Rightarrow \vdash [n]\varphi$, for all $n < \omega$ (Necessitation)

イロト イポト イヨト イヨト 三日

The Logic \mathbf{GLP}_{ω}

One may introduce additional modal operators [n], for each $n < \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system **GLP**_{ω} (Japaridze, 1986) has the following axioms and rules:

Axioms:

Boolean tautologies.

2
$$[n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi)$$
, for all $n < \omega$.

$$[n]([n]\varphi \to \varphi) \to [n]\varphi, \text{ for all } n < \omega.$$

•
$$[m]\varphi \rightarrow [n]\varphi$$
, for all $m < n < \omega$.

$$(m) \varphi \to [n] \langle m \rangle \varphi, \text{ for all } m < n < \omega.$$

Rules:

② $\vdash \varphi \Rightarrow \vdash [n]\varphi$, for all $n < \omega$ (Necessitation)

・ロト ・ 一下 ・ ト ・ ト ・ ト

The Logic \mathbf{GLP}_{ω}

One may introduce additional modal operators [n], for each $n < \omega$. The corresponding dual operators $\neg[n]\neg$ are denoted by $\langle n \rangle$. The logic system **GLP**_{ω} (Japaridze, 1986) has the following axioms and rules:

Axioms:

Boolean tautologies.

2
$$[n](\varphi \to \psi) \to ([n]\varphi \to [n]\psi)$$
, for all $n < \omega$.

$$[n]([n]\varphi \to \varphi) \to [n]\varphi, \text{ for all } n < \omega.$$

•
$$[m]\varphi \rightarrow [n]\varphi$$
, for all $m < n < \omega$.

$$(m) \varphi \to [n] \langle m \rangle \varphi, \text{ for all } m < n < \omega.$$

Rules:

$$\bullet \vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi \text{ (Modus Ponens)}$$

②
$$\vdash \varphi \Rightarrow \vdash [n]\varphi$$
, for all *n* < ω (Necessitation)

・ロト ・雪 ト ・ヨ ト ・

The Logic \mathbf{GLP}_{ξ}

More generally, for any ordinal $\xi \geq 2$, one considers the language of propositional logic with additional modal operators $[\alpha]$, for each $\alpha < \xi$. The corresponding dual operators $\neg[\alpha]\neg$ being denoted by $\langle \alpha \rangle$. The logic system **GLP**_{ξ} has the following axioms and rules:

Axioms:

Boolean tautologies.

$$[\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi), \text{ for all } \alpha < \xi.$$

$$\ \, \textbf{3} \ \, [\alpha]([\alpha]\varphi \to \varphi) \to [\alpha]\varphi, \text{ for all } \alpha < \xi.$$

 $[\beta]\varphi \to [\alpha]\varphi, \text{ for all } \beta < \alpha < \xi.$

Rules:

 $@ \vdash \varphi \Rightarrow \vdash [\alpha]\varphi, \text{ for all } \alpha < \xi \text{ (Necessitation)}$

The Logic \mathbf{GLP}_{ξ}

More generally, for any ordinal $\xi \geq 2$, one considers the language of propositional logic with additional modal operators $[\alpha]$, for each $\alpha < \xi$. The corresponding dual operators $\neg[\alpha]\neg$ being denoted by $\langle \alpha \rangle$. The logic system **GLP**_{ξ} has the following axioms and rules:

Axioms:

Boolean tautologies.

$$\begin{tabular}{ll} \end{tabular} \begin{tabular}{ll} \end{tabular} \$$

$$\ \, [\beta]\varphi \to [\alpha]\varphi, \text{ for all } \beta < \alpha < \xi.$$

$$(\beta) \varphi \to [\alpha] \langle \beta \rangle \varphi, \text{ for all } \beta < \alpha < \xi.$$

Rules:

② $\vdash \varphi \Rightarrow \vdash [\alpha]\varphi$, for all $\alpha < \xi$ (Necessitation)

The Logic \mathbf{GLP}_{ξ}

More generally, for any ordinal $\xi \geq 2$, one considers the language of propositional logic with additional modal operators $[\alpha]$, for each $\alpha < \xi$. The corresponding dual operators $\neg[\alpha]\neg$ being denoted by $\langle \alpha \rangle$. The logic system **GLP**_{ξ} has the following axioms and rules:

Axioms:

Boolean tautologies.

$$\ \ \, {\bf @} \ \ \, [\alpha](\varphi \to \psi) \to ([\alpha]\varphi \to [\alpha]\psi), \ {\rm for \ all} \ \alpha < \xi.$$

$$\ \ \, \textbf{[}\alpha\textbf{]}([\alpha]\varphi \to \varphi) \to [\alpha]\varphi, \text{ for all } \alpha < \xi.$$

$$\ \, {\bf [}\beta{\bf]}\varphi\rightarrow [\alpha]\varphi, \text{ for all } \beta<\alpha<\xi.$$

$$\label{eq:basic_states} \begin{tabular}{ll} \begin{tabular}{ll}$$

Rules:

$$\bullet \vdash \varphi, \vdash \varphi \rightarrow \psi \Rightarrow \vdash \psi \text{ (Modus Ponens)}$$

People have been interested in proving completeness for \mathbf{GLP}_{ξ} , with respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for \mathbf{GLP}_ξ with respect to topological semantics.

イロト イヨト イヨト

People have been interested in proving completeness for \mathbf{GLP}_{ξ} , with respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for \mathbf{GLP}_{ξ} with respect to topological semantics.

イロト イボト イヨト イヨト

People have been interested in proving completeness for \mathbf{GLP}_{ξ} , with respect to some natural semantics.

Problem: Kripke-style semantics do not work!

So the goal has been to prove completeness for \mathbf{GLP}_{ξ} with respect to topological semantics.

・ロト ・雪 ト ・ヨ ト ・

Thus, one considers polytopological spaces $(X, (\tau_{\alpha})_{\alpha < \xi})$.

A valuation on X is a map $v : Form \to \mathcal{P}(X)$ such that:

$$(\neg \varphi) = X - v(\varphi)$$

$$v(\varphi \wedge \psi) = v(\varphi) \cap v(\psi)$$

ν(⟨α⟩φ) = D_α(ν(φ)), for all α < ξ, where D_α : P(X) → P(X) is the derived set operator for τ_α (i.e., D_α(A) is the set of limit points of A in the τ_α topology).
Hence, ν([α]φ) = X - D_α(X - ν(φ)) = the τ_α-interior of ν(φ), for

all $\alpha < \xi$.

A formula is valid in X if $v(\varphi) = X$, for every valuation v on X.

イロト 不得 トイヨト イヨト 三日

Thus, one considers polytopological spaces $(X, (\tau_{\alpha})_{\alpha < \xi})$.

A valuation on X is a map $v : Form \to \mathcal{P}(X)$ such that:

$$v(\neg \varphi) = X - v(\varphi)$$

2
$$v(\varphi \wedge \psi) = v(\varphi) \cap v(\psi)$$

ν(⟨α⟩φ) = D_α(ν(φ)), for all α < ξ, where D_α : P(X) → P(X) is the derived set operator for τ_α (i.e., D_α(A) is the set of limit points of A in the τ_α topology). Hence, ν([α]φ) = X - D_α(X - ν(φ)) = the τ_α-interior of ν(φ), for all α < ξ.

A formula is valid in X if $v(\varphi) = X$, for every valuation v on X.

Thus, one considers polytopological spaces $(X, (\tau_{\alpha})_{\alpha < \xi})$.

A valuation on X is a map $v : Form \to \mathcal{P}(X)$ such that:

$$v(\neg \varphi) = X - v(\varphi)$$

$$v(\varphi \wedge \psi) = v(\varphi) \cap v(\psi)$$

ν(⟨α⟩φ) = D_α(ν(φ)), for all α < ξ, where D_α : P(X) → P(X) is the derived set operator for τ_α (i.e., D_α(A) is the set of limit points of A in the τ_α topology). Hence, ν([α]φ) = X - D_α(X - ν(φ)) = the τ_α-interior of ν(φ), for all α < ξ.

A formula is valid in X if $v(\varphi) = X$, for every valuation v on X.

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- τ_{α} is scattered, all $\alpha < \xi$.
- $\ 2 \ \ \tau_{\beta} \subseteq \tau_{\alpha}, \text{ for all } \beta \leq \alpha < \xi.$
- **③** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for **GLP**_{ξ} to be complete, one must also have: The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general **GLP**-spaces.

イロト 不得 トイヨト イヨト 三日

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- $\ \, {\bf 2} \ \, \tau_{\beta} \subseteq \tau_{\alpha}, \ \, {\rm for \ \, all} \ \, \beta \leq \alpha < \xi.$
- **3** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for **GLP** $_{\mathcal{E}}$ to be complete, one must also have:

• The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general **GLP**-spaces.

イロト イポト イヨト イヨト 三日

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- $\ \, {\bf 2} \ \, \tau_{\beta} \subseteq \tau_{\alpha}, \ \, {\rm for \ \, all} \ \, \beta \leq \alpha < \xi.$
- **3** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for \mathbf{GLP}_{ξ} to be complete, one must also have:

• The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general GLP-spaces.

For the **GLP**_{ξ} axioms to be valid in $(X, (\tau_{\alpha})_{\alpha < \xi})$, the topologies τ_{α} have to satisfy:

- $\ \, {\bf 2} \ \, \tau_{\beta} \subseteq \tau_{\alpha}, \ \, {\rm for \ \, all} \ \, \beta \leq \alpha < \xi.$
- **3** $D_{\alpha}(A)$ is an open set in $\tau_{\alpha+1}$, for all $A \subseteq X$.

Moreover, for \mathbf{GLP}_{ξ} to be complete, one must also have:

• The τ_{α} are non-trivial (i.e., non discrete).

So, one doesn't have much choice on how to define the τ_{α} : One fixes a scattered topology τ_0 on X, and the other topologies are determined by the D_{α} operators. One only needs to make sure the τ_{α} are non-trivial.

Such polytopological spaces are called general GLP-spaces.

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

 $\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$

as follows:

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

 $\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$

as follows:

イロト 不得 トイヨト イヨト 三日

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

 $\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$

as follows:

イロト イポト イヨト イヨト 三日

Fix some limit ordinal δ (we also allow $\delta = OR$).

Recall that the order topology on δ (a. k. a. the interval topology) is the topology τ_0 generated by the set \mathcal{B}_0 consisting of $\{0\}$ and the intervals (α, β) .

 τ_0 is a Hausdorff scattered topology in which 0 and all successor ordinals are isolated points, and the accumulation points are precisely the limit ordinals.

Now define a continuous sequence of derived topologies

$$\tau_0 \subseteq \tau_1 \subseteq \ldots \subseteq \tau_{\xi} \subseteq \ldots$$

as follows:

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Given τ_{ξ} , let $D_{\xi} : \mathcal{P}(\delta) \to \mathcal{P}(\delta)$ be the Cantor derivative operator: $D_{\xi}(A) := \{ \alpha \in \delta : \alpha \text{ is a limit point of } A \text{ in the } \tau_{\xi} \text{ topology} \}.$

Note that $D_{\xi}(A)$ is a closed set in the τ_{ξ} topology. Then let $\tau_{\xi+1}$ be the topology generated by the set

 $\mathcal{B}_{\xi+1} := \mathcal{B}_{\xi} \cup \{ D_{\xi}(A) : A \subseteq \delta \}.$

Given τ_{ξ} , let $D_{\xi} : \mathcal{P}(\delta) \to \mathcal{P}(\delta)$ be the Cantor derivative operator:

 $D_{\xi}(A) := \{ \alpha \in \delta : \alpha \text{ is a limit point of } A \text{ in the } \tau_{\xi} \text{ topology} \}.$

Note that $D_{\xi}(A)$ is a closed set in the τ_{ξ} topology.

Then let $au_{\ell+1}$ be the topology generated by the set

 $\mathcal{B}_{\xi+1} := \mathcal{B}_{\xi} \cup \{ D_{\xi}(A) : A \subseteq \delta \}.$

▲ロト ▲御 ト ▲ 臣 ト ▲ 臣 ト ● ○ ○ ○ ○ ○

Given τ_{ξ} , let $D_{\xi} : \mathcal{P}(\delta) \to \mathcal{P}(\delta)$ be the Cantor derivative operator:

 $D_{\xi}(A) := \{ \alpha \in \delta : \alpha \text{ is a limit point of } A \text{ in the } \tau_{\xi} \text{ topology} \}.$

Note that $D_{\xi}(A)$ is a closed set in the τ_{ξ} topology.

Then let $\tau_{\xi+1}$ be the topology generated by the set

$$\mathcal{B}_{\xi+1} := \mathcal{B}_{\xi} \cup \{D_{\xi}(A) : A \subseteq \delta\}.$$

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

 $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

イロト イヨト イヨト

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

 $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

3

イロト イボト イヨト イヨト

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

 $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

Notice that if the cofinality of α is uncountable and $\alpha \in D_0(A)$, then $D_0(A) \cap \alpha$ is a club subset of α .

The set $\mathcal{B}_1 := \mathcal{B}_0 \cup \{D_0(A) : A \subseteq \delta\}$ is a base for the topology τ_1 on OR, known as the club topology.

Note that the non-isolated points are exactly the ordinals of uncountable cofinality.

Fact

For every set of ordinals A,

```
D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.
```

The next topology, au_2 , is generated by the set

$$\mathcal{B}_2 := \mathcal{B}_1 \cup \{D_1(A) : A \subseteq OR\}.$$

If some stationary subset S of α does not reflect (i.e., $D_1(S) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point α has to reflect all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect (i.e., $D_1(S) \cap D_1(T) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point has to reflect simultaneously all pairs of stationary sets.

イロト イボト イヨト イヨト

The next topology, au_2 , is generated by the set

$$\mathcal{B}_2 := \mathcal{B}_1 \cup \{D_1(A) : A \subseteq OR\}.$$

If some stationary subset S of α does not reflect (i.e., $D_1(S) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point α has to reflect all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect (i.e., $D_1(S) \cap D_1(T) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point has to reflect simultaneously all pairs of stationary sets.

The next topology, au_2 , is generated by the set

$$\mathcal{B}_2 := \mathcal{B}_1 \cup \{D_1(A) : A \subseteq OR\}.$$

If some stationary subset S of α does not reflect (i.e., $D_1(S) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point α has to reflect all stationary sets.

Further, if some stationary subsets S, T of α do not simultaneously reflect (i.e., $D_1(S) \cap D_1(T) = \{\alpha\}$), then α is an isolated point of τ_2 . Thus, every non-isolated point has to reflect simultaneously all pairs of stationary sets.

Stationary reflection

An ordinal α of uncountable cofinality reflects stationary sets if for every stationary $A \subseteq \alpha$ there exists $\beta < \alpha$ such that $A \cap \beta$ is stationary in β .

Let us say that an ordinal α of uncountable cofinality is simultaneoulsy-stationary-reflecting if every pair A, B of stationary subsets of α simultaneously reflect, that is, there exists $\beta < \alpha$ such that $A \cap \beta$ and $B \cap \beta$ are both stationary in β .

イロト イヨト イヨト

Stationary reflection

An ordinal α of uncountable cofinality reflects stationary sets if for every stationary $A \subseteq \alpha$ there exists $\beta < \alpha$ such that $A \cap \beta$ is stationary in β .

Let us say that an ordinal α of uncountable cofinality is simultaneoulsy-stationary-reflecting if every pair A, B of stationary subsets of α simultaneously reflect, that is, there exists $\beta < \alpha$ such that $A \cap \beta$ and $B \cap \beta$ are both stationary in β .

・ロト ・ 一下・ ・ 日 ・ ・ 日 ・ ・ 日

Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π_1^1 -indescribable) is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal κ reflects stationary sets if and only if it is Π_1^1 -indescribable, hence if and only if it is simultaneously-stationary-reflecting.^a

^aR. Jensen, The fine structure of the constructible hierarchy. Annals of Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology τ_2 are precisely the ordinals whose cofinality is a weakly-compact cardinal.

Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π_1^1 -indescribable) is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal κ reflects stationary sets if and only if it is Π_1^1 -indescribable, hence if and only if it is simultaneously-stationary-reflecting.^a

 ${}^{a}\text{R}.$ Jensen, The fine structure of the constructible hierarchy. Annals of Math. Logic 4 (1972)

Thus, in L, the non-isolated points of the topology τ_2 are precisely the ordinals whose cofinality is a weakly-compact cardinal.

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

Jensen's Theorem

It is easy to see that every weakly-compact cardinal (i.e., Π_1^1 -indescribable) is simultaneously-stationary-reflecting.

Theorem (Jensen)

In the constructible universe L a regular cardinal κ reflects stationary sets if and only if it is Π_1^1 -indescribable, hence if and only if it is simultaneously-stationary-reflecting.^a

 $^a \mbox{R}.$ Jensen, The fine structure of the constructible hierarchy. Annals of Math. Logic 4 (1972)

Thus, in *L*, the non-isolated points of the topology τ_2 are precisely the ordinals whose cofinality is a weakly-compact cardinal.

くロ と く 同 と く ヨ と 一

Moreover,

Theorem (Magidor)

If κ is regular and reflects simultaneously pairs of stationary subsets, then κ is a weakly compact cardinal in L.^a

^aM. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of au_2 is a weakly compact cardinal.

Moreover,

Theorem (Magidor)

If κ is regular and reflects simultaneously pairs of stationary subsets, then κ is a weakly compact cardinal in L.ª

^aM. Magidor, Reflecting stationary sets. JSL, Vol. 47, Num. 4 (1982)

It follows that the consistency strength of the non-triviality of τ_2 is a weakly compact cardinal.

ξ -stationary sets

Definition

We say that $A \subseteq \delta$ is 0-stationary in α , α a limit ordinal, if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that A is ξ -stationary in α if and only if for every $\zeta < \xi$, every subset S of α that is ζ -stationary in α ζ -reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ -stationary in β .

Note:

- **()** A is 1-stationary in $\alpha \Leftrightarrow A$ is stationary in α , in the usual sense.
- ② A is 2-stationary in α ⇔ every stationary subset of α reflects to some β ∈ A.

3

イロト イヨト イヨト

ξ -stationary sets

Definition

We say that $A \subseteq \delta$ is 0-stationary in α , α a limit ordinal, if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that A is ξ -stationary in α if and only if for every $\zeta < \xi$, every subset S of α that is ζ -stationary in α ζ -reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ -stationary in β .

Note:

- **1** A is 1-stationary in $\alpha \Leftrightarrow A$ is stationary in α , in the usual sense.
- ② A is 2-stationary in α ⇔ every stationary subset of α reflects to some β ∈ A.

イロト 不得 トイヨト イヨト 二日

ξ -stationary sets

Definition

We say that $A \subseteq \delta$ is 0-stationary in α , α a limit ordinal, if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that A is ξ -stationary in α if and only if for every $\zeta < \xi$, every subset S of α that is ζ -stationary in α ζ -reflects to some $\beta \in A$, i.e., $S \cap \beta$ is ζ -stationary in β .

Note:

- **()** A is 1-stationary in $\alpha \Leftrightarrow A$ is stationary in α , in the usual sense.
- Q A is 2-stationary in α ⇔ every stationary subset of α reflects to some β ∈ A.

3

$\xi\mbox{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α .

For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

- **(**) A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .
- a is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

$\xi\text{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

- **()** A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .
- ② A is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

<ロト < 同ト < ヨト < ヨト

$\xi\text{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

1 A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .

② A is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

< ロ > < 同 > < 回 > < 回 > < 回 > <

$\xi\text{-stationary}$ reflection

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

Note:

- **1** A is 1-s-stationary in $\alpha \Leftrightarrow A$ is stationary in α .
- ② A is 2-s-stationary in α ⇔ every pair of stationary subsets of α simultaneously reflect to some β ∈ A.

くロ と く 同 と く ヨ と 一

Lecture II

3

・ロト ・四ト ・ヨト ・ヨト

Recall from Lecture I

We are looking at ordinal **GLP**-spaces, i.e., polytopological spaces of the form $(\delta, (\tau_{\zeta})_{\zeta < \xi})$, where τ_0 is the interval topology and $\tau_{\zeta+1}$ is generated by τ_{ζ} together with the sets

$$D_{\zeta}(A) := \{ \alpha : \alpha \text{ is a } \tau_{\zeta} \text{ limit point of } A \}$$

all $A \subseteq \delta$.

 au_1 is the club topology. The non-isolated points are those lpha with uncountable cofinality.

We observed that $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

Recall from Lecture I

We are looking at ordinal **GLP**-spaces, i.e., polytopological spaces of the form $(\delta, (\tau_{\zeta})_{\zeta < \xi})$, where τ_0 is the interval topology and $\tau_{\zeta+1}$ is generated by τ_{ζ} together with the sets

$$D_{\zeta}(A) := \{ \alpha : \alpha \text{ is a } \tau_{\zeta} \text{ limit point of } A \}$$

all $A \subseteq \delta$.

 τ_{1} is the club topology. The non-isolated points are those α with uncountable cofinality.

We observed that $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 うへつ

Recall from Lecture I

We are looking at ordinal **GLP**-spaces, i.e., polytopological spaces of the form $(\delta, (\tau_{\zeta})_{\zeta < \xi})$, where τ_0 is the interval topology and $\tau_{\zeta+1}$ is generated by τ_{ζ} together with the sets

$$D_{\zeta}(A) := \{ \alpha : \alpha \text{ is a } \tau_{\zeta} \text{ limit point of } A \}$$

all $A \subseteq \delta$.

 τ_{1} is the club topology. The non-isolated points are those α with uncountable cofinality.

We observed that $D_1(A) = \{ \alpha : A \cap \alpha \text{ is stationary in } \alpha \}.$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α .

For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

A is 2-s-stationary in $\alpha \Leftrightarrow$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.

Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

A is 2-s-stationary in $\alpha \Leftrightarrow$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.

Recall also the following definition

Definition

We say that $A \subseteq \delta$ is 0-simultaneously-stationary in α (0-s-stationary in α , for short) if and only if $A \cap \alpha$ is unbounded in α . For $\xi > 0$, we say that $A \subseteq \delta$ is ξ -simultaneously-stationary in α (ξ -s-stationary in α , for short) if and only for every $\zeta < \xi$, every pair of ζ -s-stationary subsets $B, C \subseteq \alpha$ simultaneously ζ -s-reflect at some $\beta \in A$, i.e., $B \cap \beta$ and $C \cap \beta$ are ζ -s-stationary in β .

A is 2-s-stationary in $\alpha \Leftrightarrow$ every pair of stationary subsets of α simultaneously reflect to some $\beta \in A$.

Proposition

 α is not isolated in the τ_2 topology if and only if α is 2-s-stationary

Proof.

Proposition

 α is not isolated in the τ_2 topology if and only if α is 2-s-stationary

Proof.

If α is not 2-s-stationary, there are stationary $A, B \subseteq \alpha$ such that $D_1(A) \cap D_1(B) = \{\alpha\}$, hence α is isolated. Now suppose α is 2-s-stat. and $\alpha \in U = C \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$, where $C \subseteq \alpha$ is club. We claim that U contains some ordinal other than α . It is enough to show that $D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$ is stationary. Suppose first that n = 2. Fix any club $C' \subseteq \alpha$. The sets $C' \cap A_0$ and $C' \cap A_1$ are stationary in α , and therefore they simultaneously reflect at some $\beta < \alpha$. Thus $\beta \in C' \cap D_1(A_0) \cap D_1(A_1)$. Now, assume it holds for n and let us show it holds for n + 1. Fix a club $C' \subseteq \alpha$. By the ind. hyp., $C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})$ is stationary. So, since the proposition holds for n = 2, the set $D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n)$ is also stationary. But clearly $D_1(C' \cap D_1(A_0) \cap \ldots \cap D_1(A_{n-1})) \cap D_1(A_n) \subseteq C' \cap D_1(A_0) \cap \ldots \cap D_1(A_n).$ A similar argument, relativized to any set A yields:

Proposition $D_2(A) = \{ \alpha : A \cap \alpha \text{ is } 2\text{-s-stationary in } \alpha \}.$

э

< ロ > < 同 > < 回 > < 回 > < 回 > <

The τ_{ξ} topology

In order to analyse the topologies τ_{ξ} , for $\xi \geq 3$, note first the following general facts:

• For every
$$\xi' < \xi$$
 and every $A, B \subseteq \delta$,

$$D_{\xi'}(A) \cap D_{\xi}(B) = D_{\xi}(D_{\xi'}(A) \cap B).$$

3 For every ordinal ξ , the sets of the form

 $I \cap D_{\xi'}(A_0) \cap \ldots \cap D_{\xi'}(A_{n-1})$

where $l \in \mathcal{B}_0$, $n < \omega$, $\xi' < \xi$, and $A_i \subseteq \delta$, all i < n, form a base for τ_{ξ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

The τ_{ξ} topology

In order to analyse the topologies τ_{ξ} , for $\xi \geq 3$, note first the following general facts:

• For every
$$\xi' < \xi$$
 and every $A, B \subseteq \delta$,

$$D_{\xi'}(A) \cap D_{\xi}(B) = D_{\xi}(D_{\xi'}(A) \cap B).$$

2 For every ordinal ξ , the sets of the form

$$I \cap D_{\xi'}(A_0) \cap \ldots \cap D_{\xi'}(A_{n-1})$$

where $I \in \mathcal{B}_0$, $n < \omega$, $\xi' < \xi$, and $A_i \subseteq \delta$, all i < n, form a base for τ_{ξ} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Characterizing non-isolated points

Theorem

1 For every ξ ,

$$D_{\xi}(A) = \{ \alpha : A \text{ is } \xi \text{-s-stationary in } \alpha \}.^{a}$$

e For every ξ and α , A is $\xi + 1$ -s-stationary in α if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha \neq \emptyset$ (equivalently, if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T)$ is ζ -s-stationary in α) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are ζ -s-stationary in α .

Sor every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary in α for some ζ_i < ξ, all i < n, then A ∩ D_{ζ0}(A₀) ∩ ... ∩ D_{ζn-1}(A_{n-1}) is ξ-s-stationary in α.

^aFor $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).

Characterizing non-isolated points

Theorem

1 For every ξ ,

$$D_{\xi}(A) = \{ \alpha : A \text{ is } \xi \text{-s-stationary in } \alpha \}.^{a}$$

- **3** For every ξ and α , A is $\xi + 1$ -s-stationary in α if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha \neq \emptyset$ (equivalently, if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T)$ is ζ -s-stationary in α) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are ζ -s-stationary in α .
- Sor every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary in α for some ζ_i < ξ, all i < n, then A ∩ D_{ζ0}(A₀) ∩ . . . ∩ D_{ζn-1}(A_{n-1}) is ξ-s-stationary in α.

^aFor $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).

Characterizing non-isolated points

Theorem

• For every ξ ,

$$D_{\xi}(A) = \{ \alpha : A \text{ is } \xi \text{-s-stationary in } \alpha \}.^{a}$$

So For every ξ and α , A is $\xi + 1$ -s-stationary in α if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha \neq \emptyset$ (equivalently, if and only if $A \cap D_{\zeta}(S) \cap D_{\zeta}(T)$ is ζ -s-stationary in α) for every $\zeta \leq \xi$ and every pair S, T of subsets of α that are ζ -s-stationary in α .

For every ξ and α, if A is ξ-s-stationary in α and A_i is ζ_i-s-stationary in α for some ζ_i < ξ, all i < n, then A ∩ D_{ζ0}(A₀) ∩ ... ∩ D_{ζn-1}(A_{n-1}) is ξ-s-stationary in α.

^aFor $\xi < \omega$, this is due independently to L. Beklemishev (Unpublished).

Taking $A = \delta$ in (1) above, we obtain the following

Corollary

For every ξ , an ordinal $\alpha < \delta$ is not isolated in the τ_{ξ} topology if and only if α is ξ -s-stationary.

< A > <

Taking $A = \delta$ in (1) above, we obtain the following

Corollary

For every ξ , an ordinal $\alpha < \delta$ is not isolated in the τ_{ξ} topology if and only if α is ξ -s-stationary.

< A > <

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

イロト イボト イヨト イヨト

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三 ののの

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

For each limit ordinal α and each ξ , let NS_{α}^{ξ} be the set of non- ξ -s-stationary subsets of α .

Thus, if α has uncountable cofinality, NS^1_{α} is the ideal of non-stationary subsets of α and $(NS^1_{\alpha})^*$ is the club filter over α .

Notice that $\zeta \leq \xi$ implies $NS_{\alpha}^{\zeta} \subseteq NS_{\alpha}^{\xi}$ and $(NS_{\alpha}^{\zeta})^* \subseteq (NS_{\alpha}^{\xi})^*$.

Also note that $A \subseteq \alpha$ belongs to $(NS_{\alpha}^{\xi})^*$ if and only if for some $\zeta < \xi$ and some ζ -s-stationary sets $S, T \subseteq \alpha$, the set $D_{\zeta}(S) \cap D_{\zeta}(T) \cap \alpha$ is contained in A. In particular, if $S \subseteq \alpha$ is ζ -s-stationary, with $\zeta < \xi$, then $D_{\zeta}(S) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Theorem

For every ξ , a limit ordinal α is ξ -s-stationary if and only if NS_{α}^{ξ} is a proper ideal, hence if and only if $(NS_{\alpha}^{\xi})^*$ is a proper filter.

< A ▶

Proof.

Assume α is ξ -s-stationary (hence $\alpha \notin NS_{\alpha}^{\xi}$) and let us show that NS_{α}^{ξ} is an ideal. For $\xi = 0$ this is clear. So, suppose $\xi > 0$ and $A, B \in NS_{\alpha}^{\xi}$. There exist $\zeta_A, \zeta_B < \xi$, and there exist sets $S_A, T_A \subseteq \alpha$ that are ζ_A -s-stationary in α , and sets $S_B, T_B \subseteq \alpha$ that are ζ_B -s-stationary in α , such that $D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap A = D_{\zeta_B}(S_B) \cap D_{\zeta_b}(T_B) \cap B = \emptyset$. Hence,

$$(D_{\zeta_A}(S_A)\cap D_{\zeta_A}(T_A)\cap D_{\zeta_B}(S_B)\cap D_{\zeta_B}(T_B))\cap (A\cup B)=\emptyset.$$

The set $X := D_{\zeta_A}(S_A) \cap D_{\zeta_A}(T_A) \cap D_{\zeta_B}(S_B) \cap D_{\zeta_B}(T_B)$ is $max{\zeta_A, \zeta_B}$ -s-stationary in α . Now notice that

$$D_{max\{\zeta_A,\zeta_B\}}(X)\subseteq X$$

and so we have

$$D_{max{\zeta_A,\zeta_B}}(X) \cap \alpha \cap (A \cup B) = \emptyset$$

which witnesses that $A \cup B \in NS^{\xi}_{\alpha}$.

Continued.

For the converse, assume NS^{ξ}_{α} is a proper ideal.

Take any A and B ζ -s-stationary subsets of α , for some $\zeta < \xi$. Then $D_{\zeta}(A) \cap \alpha$ and $D_{\zeta}(B) \cap \alpha$ are in $(NS_{\alpha}^{\xi})^*$. Moreover, if $S, T \subseteq \alpha$ are any ζ' -s-stationary sets, for some $\zeta' < \xi$, then also $D_{\zeta'}(S) \cap \alpha$ and $D_{\zeta'}(T) \cap \alpha$ belong to $(NS_{\alpha}^{\xi})^*$. Hence, since $(NS_{\alpha}^{\xi})^*$ is a filter,

$$D_{\zeta}(A) \cap D_{\zeta}(B) \cap D_{\zeta'}(S) \cap D_{\zeta'}(T) \cap \alpha \in (NS^{\xi}_{\alpha})^*$$

which implies, since $(NS_{\alpha}^{\xi})^*$ is proper, that $D_{\zeta}(A) \cap D_{\zeta}(B) \cap D_{\zeta'}(S) \cap D_{\zeta'}(T) \cap \alpha \neq \emptyset$. This shows that $D_{\zeta}(A) \cap D_{\zeta}(B)$ is ξ -s-stationary in α . Since A and B were arbitrary, this implies α is ξ -s-stationary.

くロト く得ト くほト くほトー

Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

() α is a non-isolated point in the τ_{ξ} topology.

2 α is ξ -s-stationary.

• NS^{ξ}_{α} is a proper ideal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

- **(**) α is a non-isolated point in the τ_{ξ} topology.
- **2** α is ξ -s-stationary.
- NS^{ξ}_{α} is a proper ideal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Summary

The following are equivalent for every limit ordinal α and every $\xi > 0$:

- **(**) α is a non-isolated point in the τ_{ξ} topology.
- **2** α is ξ -s-stationary.
- **3** NS^{ξ}_{α} is a proper ideal.

イロト 不得 トイヨト イヨト 二日

Indescribable cardinals

Recall that a formula of second-order logic is Σ_0^1 (or Π_0^1) if it does not have quantifiers of second order, but it may have any finite number of first-order quantifiers and free first-order and second-order variables.

Definition

For ξ any ordinal, we say that a formula is $\Sigma^1_{\xi+1}$ if it is of the form

$$\exists X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Π^1_{ξ} . And a formula is $\Pi^1_{\xi+1}$ if it is of the form

$$\forall X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0,\ldots,X_k)$ is $\Sigma^1_{\mathcal{E}}$.

・ロット (雪) (日) (日)

Indescribable cardinals

Recall that a formula of second-order logic is Σ_0^1 (or Π_0^1) if it does not have quantifiers of second order, but it may have any finite number of first-order quantifiers and free first-order and second-order variables.

Definition

For ξ any ordinal, we say that a formula is $\Sigma^1_{\xi+1}$ if it is of the form

$$\exists X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0, \ldots, X_k)$ is Π^1_{ξ} . And a formula is $\Pi^1_{\xi+1}$ if it is of the form

$$\forall X_0,\ldots,X_k\varphi(X_0,\ldots,X_k)$$

where $\varphi(X_0,\ldots,X_k)$ is Σ^1_{ξ} .

▲御 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Definition

If ξ is a limit ordinal, then we say that a formula is Π^1_{ξ} if it is of the form

$$\bigwedge_{\zeta < \xi} \varphi_{\zeta}$$

where φ_{ζ} is Π^{1}_{ζ} , all $\zeta < \xi$, and it has only finitely-many free second-order variables. And we say that a formula is Σ^{1}_{ξ} if it is of the form

 $\bigvee_{\zeta<\xi}\varphi_{\zeta}$

where φ_{ζ} is Σ_{ζ}^{1} , all $\zeta < \xi$, and it has only finitely-many free second-order variables.

Definition

A cardinal κ is Π^1_{ξ} -indescribable if for all subsets $A \subseteq V_{\kappa}$ and every Π^1_{ξ} sentence φ , if

 $\langle V_{\kappa}, \in, A \rangle \models \varphi$

then there is some $\lambda < \kappa$ such that

 $\langle V_{\lambda}, \in, A \cap V_{\lambda} \rangle \models \varphi.$

э

くロ と く 同 と く ヨ と 一

Theorem

Every Π^1_{ξ} -indescribable cardinal is $(\xi + 1)$ -s-stationary. Hence, if ξ is a limit ordinal and a cardinal κ is Π^1_{ζ} -indescribable for all $\zeta < \xi$, then κ is ξ -s-stationary.

< 🗇 🕨 <

Proof.

Let κ be an infinite cardinal. Clearly, the fact that a set $A \subseteq \kappa$ is 0-s-stationary (i.e., unbounded) in κ can be expressed as a Π_0^1 sentence $\varphi_0(A)$ over $\langle V_{\kappa}, \in, A \rangle$. Inductively, for every $\xi > 0$, the fact that a set $A \subseteq \kappa$ is ξ -s-stationary in κ can be expressed by a Π_{ξ}^1 sentence φ_{ξ} over $\langle V_{\kappa}, \in, A \rangle$. Namely,

$$\bigwedge_{\zeta<\xi}(A ext{ is } \zeta ext{-s-stationary})$$

in the case ξ is a limit ordinal, and by the sentence

$$\bigwedge_{\zeta < \xi - 1} (A ext{ is } \zeta ext{-s-stationary}) \land$$

 $orall S, T(S,T ext{ are } (\xi-1) ext{-s-stationary in } \kappa o$

 $\exists \beta \in A(S \text{ and } T \text{ are } (\xi - 1) \text{-s-stationary in } \beta))$

which is easily seen to be equivalent to a Π^1_{ξ} sentence, in the case ξ is a successor ordinal.

Continued.

Now suppose κ is Π^1_{ξ} -indescribable, and suppose that A and B are ζ -s-stationary subsets of κ , for some $\zeta \leq \xi$. Thus,

$$\langle V_{\kappa}, \in, A, B \rangle \models \varphi_{\zeta}[A] \land \varphi_{\zeta}[B].$$

By the $\Pi^1_{\mathcal{C}}$ -indescribability of κ there exists $\beta < \kappa$ such that

$$\langle V_{\beta}, \in, A \cap \beta, B \cap \beta \rangle \models \varphi_{\zeta}[A \cap \beta] \land \varphi_{\zeta}[B \cap \beta]$$

which implies that A and B are ζ -s-stationary in β . Hence κ is $(\xi + 1)$ -s-reflecting.

- 4 同 6 4 日 6 4 日 6

Reflection and indescribability in L

Theorem (J.B.-M. Magidor-H. Sakai, 2013; J.B., 2015)

Assume V = L. For every $\xi > 0$, a regular cardinal is $(\xi + 1)$ -stationary if and only if it is Π^1_{ξ} -indescribable, hence if and only if it is $(\xi + 1)$ -s-stationary.^{ab}

^a*Reflection and indescribability in the constructible universe*. Israel J. of Math. Vol. 208, Issue 1 (2015)

^bDerived topologies on ordinals and stationary reflection. Preprint (2015)

The proof actually shows the following:

Theorem

Assume V = L. Suppose $\xi > 0$ and κ is a regular $(\xi + 1)$ -stationary cardinal. Then for every $A \subseteq \kappa$ and every Π^1_{ξ} sentence Ψ , if $\langle L_{\kappa}, \in, A \rangle \models \Psi$, then there exists a ξ -stationary $S \subseteq \kappa$ such that Ψ reflects to every ordinal λ on which S is ξ -stationary.

Theorem

 $CON(\exists \kappa < \lambda \ (\kappa \ is \ \Pi^1_{\xi} \text{-indescribable} \land \lambda \ is \ inaccessible)) \ implies$ $<math>CON(\tau_{\xi+1} \ is \ non-discrete \land \tau_{\xi+2} \ is \ discrete).$

Proof.

Let κ be Π_{ξ}^{1} -indescribable, and let $\lambda > \kappa$ be inaccessible. In L, κ is Π_{ξ}^{1} -indescribable and λ is inaccessible. So, in L, let κ_{0} be the least Π_{ξ}^{1} -indescribable cardinal, and let λ_{0} be the least inaccessible cardinal above κ_{0} . Then $L_{\lambda_{0}}$ is a model of ZFC in which κ_{0} is Π_{ξ}^{1} -indescribable and no regular cardinal greater than κ_{0} is 2-stationary. The reason is that if α is a regular cardinal greater than κ_{0} , then $\alpha = \beta^{+}$, for some cardinal β . And since Jensen's principle \square_{β} holds, there exists a stationary subset of α that does not reflect.

<ロト < 同ト < ヨト < ヨト

Theorem

 $CON(\exists \kappa < \lambda \ (\kappa \ is \ \Pi^1_{\xi} \text{-indescribable} \land \lambda \ is \ inaccessible)) \ implies$ $<math>CON(\tau_{\xi+1} \ is \ non-discrete \land \tau_{\xi+2} \ is \ discrete).$

Proof.

Let κ be Π_{ξ}^{1} -indescribable, and let $\lambda > \kappa$ be inaccessible. In L, κ is Π_{ξ}^{1} -indescribable and λ is inaccessible. So, in L, let κ_{0} be the least Π_{ξ}^{1} -indescribable cardinal, and let λ_{0} be the least inaccessible cardinal above κ_{0} . Then $L_{\lambda_{0}}$ is a model of ZFC in which κ_{0} is Π_{ξ}^{1} -indescribable and no regular cardinal greater than κ_{0} is 2-stationary. The reason is that if α is a regular cardinal greater than κ_{0} , then $\alpha = \beta^{+}$, for some cardinal β . And since Jensen's principle \square_{β} holds, there exists a stationary subset of α that does not reflect.

Lecture III

3

▲ロ → ▲ 圖 → ▲ 臣 → ▲ 臣 → □

If V = L, then the following are equivalent for every regular cardinal κ and $\xi > 0$:

- κ if $(\xi + 1)$ -stationary.
- 2 κ is $(\xi + 1)$ -s-stationary.
- **()** κ is Π^1_{ξ} -indescribable.

Hence, for every limit ordinal ξ , a regular cardinal is ξ -stationary if and only if it is ξ -s-stationary, and if and only if it is Π^1_{ζ} -indescribable for every $\zeta < \xi$.

Question

What is the consistency strength of *ξ*-stationarity? And of *ξ*-s-stationarity?

If V = L, then the following are equivalent for every regular cardinal κ and $\xi > 0$:

• κ if $(\xi + 1)$ -stationary.

2 κ is $(\xi + 1)$ -s-stationary.

(a) κ is Π^1_{ξ} -indescribable.

Hence, for every limit ordinal ξ , a regular cardinal is ξ -stationary if and only if it is ξ -s-stationary, and if and only if it is Π^1_{ζ} -indescribable for every $\zeta < \xi$.

Question

What is the consistency strength of *ξ*-stationarity? And of *ξ*-s-stationarity?

If V = L, then the following are equivalent for every regular cardinal κ and $\xi > 0$:

- κ if $(\xi + 1)$ -stationary.
- 2 κ is $(\xi + 1)$ -s-stationary.
- (a) κ is Π^1_{ξ} -indescribable.

Hence, for every limit ordinal ξ , a regular cardinal is ξ -stationary if and only if it is ξ -s-stationary, and if and only if it is Π^1_{ζ} -indescribable for every $\zeta < \xi$.

Question

What is the consistency strength of *ξ*-stationarity? And of *ξ*-s-stationarity?

If V = L, then the following are equivalent for every regular cardinal κ and $\xi > 0$:

- **1** κ if $(\xi + 1)$ -stationary.
- 2 κ is $(\xi + 1)$ -s-stationary.
- κ is Π^1_{ξ} -indescribable.

Hence, for every limit ordinal ξ , a regular cardinal is ξ -stationary if and only if it is ξ -s-stationary, and if and only if it is Π^1_{ζ} -indescribable for every $\zeta < \xi$.

Question

What is the consistency strength of ξ -stationarity? And of ξ -s-stationarity?

If V = L, then the following are equivalent for every regular cardinal κ and $\xi > 0$:

- κ if $(\xi + 1)$ -stationary.
- 2 κ is $(\xi + 1)$ -s-stationary.
- **3** κ is Π^1_{ξ} -indescribable.

Hence, for every limit ordinal ξ , a regular cardinal is ξ -stationary if and only if it is ξ -s-stationary, and if and only if it is Π^1_{ζ} -indescribable for every $\zeta < \xi$.

Question

What is the consistency strength of ξ -stationarity? And of ξ -s-stationarity?

If V = L, then the following are equivalent for every regular cardinal κ and $\xi > 0$:

- κ if $(\xi + 1)$ -stationary.
- 2 κ is $(\xi + 1)$ -s-stationary.
- **3** κ is Π^1_{ξ} -indescribable.

Hence, for every limit ordinal ξ , a regular cardinal is ξ -stationary if and only if it is ξ -s-stationary, and if and only if it is Π^1_{ζ} -indescribable for every $\zeta < \xi$.

Question

What is the consistency strength of ξ -stationarity? And of ξ -s-stationarity?

Let us write:

 $d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^+.$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

< ロ > < 同 > < 三 > < 三 >

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^+.$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

< ロ > < 同 > < 三 > < 三 >

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X)\in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

< ロ > < 同 > < 回 > < 回 > .

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal.

 κ is weakly compact \Rightarrow many reflection cardinals below κ .

(日) (同) (三) (三) (二)

Let us write:

$$d_{\xi}(A) := \{ \alpha : A \cap \alpha \text{ is } \xi \text{-stationary in } \alpha \}$$

Definition (A. H. Mekler-S. Shelah, 1989)

A regular uncountable cardinal κ is a reflection cardinal if there exists a reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_1(X) \in \mathcal{I}^+.$$

Note: if κ is 2-stationary, then NS_{κ} is the smallest such ideal. κ is weakly compact \Rightarrow many reflection cardinals below κ .

(日) (同) (三) (三) (二)

Theorem (A. H. Mekler-S. Shelah, 1989)

If κ is a reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 2-stationary. (In fact, the set Reg $\cap \kappa$ of regular cardinals below κ is 2-stationary.)

Corollary

The following are equiconsistent:

- **①** There exists a reflection cardinal.
- **2** There exists a 2-stationary cardinal.
- There exists a regular cardinal κ such that every κ-free abelian group is κ⁺-free.

< ロ > < 同 > < 三 > < 三 >

Theorem (A. H. Mekler-S. Shelah, 1989)

If κ is a reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is 2-stationary. (In fact, the set Reg $\cap \kappa$ of regular cardinals below κ is 2-stationary.)

Corollary

The following are equiconsistent:

- **1** There exists a reflection cardinal.
- 2 There exists a 2-stationary cardinal.
- There exists a regular cardinal κ such that every κ-free abelian group is κ⁺-free.

イロト イポト イラト イラト

Definition

A regular cardinal κ is greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^* \quad \Rightarrow \quad d_1(X)\in \mathcal{I}^*.$$

Theorem (A. H. Mekler-S. Shelah, 1989)

If V = L and κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.

Thus, in *L*, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.

< ロ > < 同 > < 三 > < 三 >

Definition

A regular cardinal κ is greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^* \quad \Rightarrow \quad d_1(X)\in \mathcal{I}^*.$$

Theorem (A. H. Mekler-S. Shelah, 1989)

If V = L and κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.

Thus, in *L*, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.

くロ と く 同 と く ヨ と 一

Definition

A regular cardinal κ is greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^* \quad \Rightarrow \quad d_1(X)\in \mathcal{I}^*.$$

Theorem (A. H. Mekler-S. Shelah, 1989)

If V = L and κ is at most the first greatly-Mahlo cardinal, then κ is not a reflection cardinal.

Thus, in L, the first reflection cardinal is strictly between the first greatly-Mahlo and the first weakly-compact.

< ロ > < 同 > < 三 > < 三 >

We would like to prove analogous results for ξ -stationay sets. So, let's define:

Definition

For $\xi > 0$, a regular uncountable cardinal κ is an ξ -reflection cardinal if there exists a ξ -reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^+ \quad \Rightarrow \quad d_\xi(X)\in \mathcal{I}^+.$$

Note: κ is 2-stationary if and only if NS_{κ} is a 1-reflection ideal. Thus, every 2-stationary regular cardinal is a 1-reflection cardinal.

< ロ > < 同 > < 回 > < 回 >

We would like to prove analogous results for ξ -stationay sets. So, let's define:

Definition

For $\xi > 0$, a regular uncountable cardinal κ is an ξ -reflection cardinal if there exists a ξ -reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^+ \quad \Rightarrow \quad d_\xi(X)\in \mathcal{I}^+.$$

Note: κ is 2-stationary if and only if NS_{κ} is a 1-reflection ideal. Thus, every 2-stationary regular cardinal is a 1-reflection cardinal.

< ロ > < 同 > < 回 > < 回 >

We would like to prove analogous results for ξ -stationay sets. So, let's define:

Definition

For $\xi > 0$, a regular uncountable cardinal κ is an ξ -reflection cardinal if there exists a ξ -reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_{\xi}(X) \in \mathcal{I}^+.$$

Note: κ is 2-stationary if and only if NS_{κ} is a 1-reflection ideal. Thus, every 2-stationary regular cardinal is a 1-reflection cardinal.

< ロ > < 同 > < 三 > < 三 >

We would like to prove analogous results for ξ -stationay sets. So, let's define:

Definition

For $\xi > 0$, a regular uncountable cardinal κ is an ξ -reflection cardinal if there exists a ξ -reflection ideal on κ , i.e., a proper, normal, and κ -complete ideal \mathcal{I} on κ such that for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^+ \quad \Rightarrow \quad d_{\xi}(X) \in \mathcal{I}^+.$$

Note: κ is 2-stationary if and only if NS_{κ} is a 1-reflection ideal. Thus, every 2-stationary regular cardinal is a 1-reflection cardinal.

・ロト ・ 一 マ ・ コ ・ ・ 日 ・

Proposition

Every Π^1_{ξ} -indescribable cardinal is a $(\xi + 1)$ -reflection cardinal.

Proof.

If κ is Π^1_{ξ} -indescribable, then $NS^{\xi+1}_{\kappa}$ is a $(\xi + 1)$ -reflection ideal. The point is that if κ is Π^1_{ξ} -indescribable, then $(NS^{\xi+1}_{\kappa})^*$ is contained in the $(\xi + 1)$ -indescribable filter, and hence it is normal.

However,

Proposition

For every $\xi > 0$, the fact that κ is a ξ -reflection cardinal is Π_1^1 expressible over the structure $\langle V_{\kappa}, \in, \xi, \kappa \rangle$. Hence, if κ is a ξ -reflection cardinal and is weakly compact, then the set of ξ -reflection cardinals smaller than κ belongs to the weakly compact filter.

<ロト < 同ト < ヨト < ヨト

Proposition

Every Π^1_{ξ} -indescribable cardinal is a $(\xi + 1)$ -reflection cardinal.

Proof.

If κ is Π^1_{ξ} -indescribable, then $NS^{\xi+1}_{\kappa}$ is a $(\xi + 1)$ -reflection ideal. The point is that if κ is Π^1_{ξ} -indescribable, then $(NS^{\xi+1}_{\kappa})^*$ is contained in the $(\xi + 1)$ -indescribable filter, and hence it is normal.

However,

Proposition

For every $\xi > 0$, the fact that κ is a ξ -reflection cardinal is Π_1^1 expressible over the structure $\langle V_{\kappa}, \in, \xi, \kappa \rangle$. Hence, if κ is a ξ -reflection cardinal and is weakly compact, then the set of ξ -reflection cardinals smaller than κ belongs to the weakly compact filter.

<ロト < 同ト < ヨト < ヨト

Proposition

Every Π^1_{ξ} -indescribable cardinal is a $(\xi + 1)$ -reflection cardinal.

Proof.

If κ is Π^1_{ξ} -indescribable, then $NS^{\xi+1}_{\kappa}$ is a $(\xi + 1)$ -reflection ideal. The point is that if κ is Π^1_{ξ} -indescribable, then $(NS^{\xi+1}_{\kappa})^*$ is contained in the $(\xi + 1)$ -indescribable filter, and hence it is normal.

However,

Proposition

For every $\xi > 0$, the fact that κ is a ξ -reflection cardinal is Π_1^1 expressible over the structure $\langle V_{\kappa}, \in, \xi, \kappa \rangle$. Hence, if κ is a ξ -reflection cardinal and is weakly compact, then the set of ξ -reflection cardinals smaller than κ belongs to the weakly compact filter.

イロト イボト イヨト イヨト

On the consistency strength of ξ -stationarity

Theorem (J.B., M. Magidor, and S. Mancilla, 2015)

If κ is a ξ -reflection cardinal in L, then in some generic extension of L that preserves cardinals, κ is $(\xi + 1)$ -stationary. (In fact, the set $\text{Reg} \cap \kappa$ of regular cardinals below κ is $(\xi + 1)$ -stationary).

- 4 同 6 4 日 6 4 日 6

Problem

Suppose *S* is a subset of κ that does not 2-reflect, i.e., $d_2(S) = \emptyset$. Then $T := S \cup \{\alpha < \kappa : cof(\alpha) = \omega\}$ does not 2-reflect either: for if $\alpha \in d_2(T)$, then since $\alpha \notin d_2(S)$ there exists $X \subseteq \alpha$ *i*-stationary, some i < 2, such that $d_i(X) \cap S \cap \alpha = \emptyset$. If i = 0, then $d_i(X) \cap \alpha$ is a club subset of α disjoint from *S*, and therefore $d_i(X) \cap T \cap \alpha$ is a 2-stationary subset of α contained in $\{\beta < \alpha : cof(\beta) = \omega\}$, which is impossible. But if i = 1, then $d_i(X) \cap T \cap \alpha = d_i(X) \cap S \cap \alpha = \emptyset$, contradicting $\alpha \in d_2(T)$. Now, if we shoot a club through the complement of *T*, then in *V*[*G*] the club contains ordinals of cofinality ω but whose cofinality in *V* is

uncountable. Hence cardinals are collapsed

Problem

Suppose *S* is a subset of κ that does not 2-reflect, i.e., $d_2(S) = \emptyset$. Then $T := S \cup \{\alpha < \kappa : cof(\alpha) = \omega\}$ does not 2-reflect either: for if $\alpha \in d_2(T)$, then since $\alpha \notin d_2(S)$ there exists $X \subseteq \alpha$ *i*-stationary, some i < 2, such that $d_i(X) \cap S \cap \alpha = \emptyset$. If i = 0, then $d_i(X) \cap \alpha$ is a club subset of α disjoint from *S*, and therefore $d_i(X) \cap T \cap \alpha$ is a 2-stationary subset of α contained in $\{\beta < \alpha : cof(\beta) = \omega\}$, which is impossible. But if i = 1, then $d_i(X) \cap T \cap \alpha = d_i(X) \cap S \cap \alpha = \emptyset$, contradicting $\alpha \in d_2(T)$. Now, if we shoot a club through the complement of *T*, then in *V*[*G*] the club contains ordinals of cofinality ω but whose cofinality in *V* is uncountable. Hence cardinals are collapsed.

・ロト ・ 一下 ・ ト ・ ト ・ ト

Definition

For κ an uncountable regular cardinal, $S \subseteq \kappa$, and $\xi > 0$, let $\mathbb{D}_{\xi,S}$ be the forcing notion whose conditions are functions

$$p: \delta + 1 \rightarrow \{0, 1\}$$

where $\delta < \kappa$ and $p^{-1}[\{1\}]$ is not ξ -stationary in α for every $\alpha \in S$, i.e., $d_{\xi}(p^{-1}[\{1\}]) \subseteq \kappa \setminus S$. The ordering is by end-extension, i.e., $p \leq q$ if and only if p is an end-extension of q.

Lemma

 $\mathbb{D}_{\xi,S}$ is $< \kappa$ -distributive.

Definition

For κ an uncountable regular cardinal, $S \subseteq \kappa$, and $\xi > 0$, let $\mathbb{D}_{\xi,S}$ be the forcing notion whose conditions are functions

$$p: \delta + 1 \rightarrow \{0, 1\}$$

where $\delta < \kappa$ and $p^{-1}[\{1\}]$ is not ξ -stationary in α for every $\alpha \in S$, i.e., $d_{\xi}(p^{-1}[\{1\}]) \subseteq \kappa \setminus S$. The ordering is by end-extension, i.e., $p \leq q$ if and only if p is an end-extension of q.

Lemma

 $\mathbb{D}_{\xi,S}$ is $< \kappa$ -distributive.

くロト く得ト くほト くほトー

Lemma

Suppose that H is $\mathbb{D}_{\xi,S}$ -generic over V and let

$$X_H := \bigcup \{ p^{-1}[\{1\}] : p \in H \}.$$

Then X_H is a stationary subset of κ and $d_{\xi}(X_H) \cap \kappa \subseteq \kappa \setminus S$.

< ロ > < 同 > < 回 > < 回 > < 回 > <

The iteration

We do an iteration \mathbb{P} , of length κ^+ , with support of size $< \kappa$, and such that at every successor stage α , if the subset S of κ given by the bookkeeping function is a stationary set that does not reflect, then the forcing $\dot{\mathbb{Q}}_{\alpha}$ shoots a club through the complement of S; and if S is a stationary set such that $d_{\zeta}(S) \neq \emptyset$ but $d_{\zeta+1}(S) = \emptyset$, some $0 < \zeta \leq \xi$, then $\dot{\mathbb{Q}}_{\alpha}$ adds a set of the form $d_{\zeta}(X)$, with X stationary, through the complement of S. Moreover, we destroy at later stages of the iteration all potential counterexamples to X being ζ -stationary

・ロト ・ 一下 ・ ト ・ ト ・ ト

On the consistency strength of *n*-stationarity

Definition

A regular cardinal κ is ξ -greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X\in \mathcal{I}^* \quad \Rightarrow \quad d_{\xi}(X)\in \mathcal{I}^*.$$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first ξ -greatly-Mahlo cardinal, then κ is not an ξ -reflection cardinal.

▲ □ ▶ ▲ □ ▶ ▲

On the consistency strength of *n*-stationarity

Definition

A regular cardinal κ is ξ -greatly Mahlo if there exists a proper, normal, and κ -complete ideal \mathcal{I} on κ such that $Reg \cap \kappa \in \mathcal{I}^*$, and for every $X \subseteq \kappa$,

$$X \in \mathcal{I}^* \quad \Rightarrow \quad d_{\xi}(X) \in \mathcal{I}^*.$$

Theorem (J.B. and S. Mancilla, 2014)

In L, if κ is at most the first ξ -greatly-Mahlo cardinal, then κ is not an ξ -reflection cardinal.

Conclusion

Corollary

The consistency strength of the existence of an $(\xi + 1)$ -stationary cardinal is strictly between the existence of a ξ -greatly-Mahlo cardinal and the existence of a Π^1_{ξ} -indescribable cardinal.

< □ > <

On the consistency strength of ξ -s-stationarity.

Theorem (Magidor)

The following are equiconsistent:

- There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects simultaneously pairs of stationary sets).
- 2 There exists a weakly-compact cardinal.^a

^aM. Magidor, On reflecting stationary sets. JSL 47 (1982)

Conjecture

The following should be equiconsistent for every $\xi > 0$:

- **1** There exists an $(\xi + 1)$ -s-stationary cardinal.
- 2 There exists an Π^1_{ε} -indescribable cardinal.

< ロ > < 同 > < 三 > < 三 >

On the consistency strength of ξ -s-stationarity.

Theorem (Magidor)

The following are equiconsistent:

- There exists a 2-s-stationary cardinal (i.e., a cardinal that reflects simultaneously pairs of stationary sets).
- 2 There exists a weakly-compact cardinal.^a

^aM. Magidor, On reflecting stationary sets. JSL 47 (1982)

Conjecture

The following should be equiconsistent for every $\xi > 0$:

- There exists an $(\xi + 1)$ -s-stationary cardinal.
- **2** There exists an $\Pi^1_{\mathcal{E}}$ -indescribable cardinal.

< ロ > < 同 > < 三 > < 三 >

The $\ensuremath{\mathsf{GLP}}$ completeness problem

In order to solve the **GLP** completeness problem under ordinal topological semantics it only remains to prove the following:

Theorem (?)

Assume whatever you need (e.g., large cardinals, global square, ...). For $\xi > 1$ and some κ , for every finite rooted tree $\langle T, \leq_T \rangle$, there exists a function $S : T \to \mathcal{P}(\kappa) \setminus \{\emptyset\}$ such that

- $\{S_x : x \in T\}$ is pairwise disjoint.
- ② If $x <_T y$ and $\alpha \in S_x$, then $S_y \cap \alpha \in (NS_\alpha^{\xi})^+$.
- **③** For every $x \in T$, if $\alpha \in S_x$, then $(\bigcup_{x \leq \tau y} S_y) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

イロト イボト イヨト イヨト

The $\ensuremath{\mathsf{GLP}}$ completeness problem

In order to solve the **GLP** completeness problem under ordinal topological semantics it only remains to prove the following:

Theorem (?)

Assume whatever you need (e.g., large cardinals, global square, ...). For $\xi > 1$ and some κ , for every finite rooted tree $\langle T, \leq_T \rangle$, there exists a function $S : T \to \mathcal{P}(\kappa) \setminus \{\emptyset\}$ such that

•
$$\{S_x : x \in T\}$$
 is pairwise disjoint.

2 If
$$x <_T y$$
 and $\alpha \in S_x$, then $S_y \cap \alpha \in (NS_{\alpha}^{\xi})^+$.

3 For every
$$x \in T$$
, if $\alpha \in S_x$, then $(\bigcup_{x < \tau y} S_y) \cap \alpha \in (NS_{\alpha}^{\xi})^*$.

Overlap the theory of hyperstationary sets for P_κ(λ). What are the large cardinals involved?

- Oefine the hyperstationary version of Woodin's stationary tower and study its properties.
- Ocharacterize the non-isolated points of general GLP-spaces. What are the large cardinals involved?
- What is the notion of almost-freeness for abelian groups that corresponds (i.e., is equiconsistent) to ξ-stationarity?
- Take any result about stationary sets and prove it or disprove it for hyperstationary sets (assuming appropriate large cardinals).

< ロ > < 同 > < 回 > < 回 >

- Overlap the theory of hyperstationary sets for P_κ(λ). What are the large cardinals involved?
- Of Define the hyperstationary version of Woodin's stationary tower and study its properties.
- Ocharacterize the non-isolated points of general GLP-spaces. What are the large cardinals involved?
- What is the notion of almost-freeness for abelian groups that corresponds (i.e., is equiconsistent) to ξ-stationarity?
- Take any result about stationary sets and prove it or disprove it for hyperstationary sets (assuming appropriate large cardinals).

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Overlap the theory of hyperstationary sets for P_κ(λ). What are the large cardinals involved?
- Of Define the hyperstationary version of Woodin's stationary tower and study its properties.
- Ocharacterize the non-isolated points of general GLP-spaces. What are the large cardinals involved?
- What is the notion of almost-freeness for abelian groups that corresponds (i.e., is equiconsistent) to ξ-stationarity?
- Take any result about stationary sets and prove it or disprove it for hyperstationary sets (assuming appropriate large cardinals).

- Overlap the theory of hyperstationary sets for P_κ(λ). What are the large cardinals involved?
- Of Define the hyperstationary version of Woodin's stationary tower and study its properties.
- Ocharacterize the non-isolated points of general GLP-spaces. What are the large cardinals involved?
- What is the notion of almost-freeness for abelian groups that corresponds (i.e., is equiconsistent) to ξ-stationarity?
- Take any result about stationary sets and prove it or disprove it for hyperstationary sets (assuming appropriate large cardinals).

イロト イボト イヨト イヨト

- Overlap the theory of hyperstationary sets for P_κ(λ). What are the large cardinals involved?
- Of Define the hyperstationary version of Woodin's stationary tower and study its properties.
- Ocharacterize the non-isolated points of general GLP-spaces. What are the large cardinals involved?
- What is the notion of almost-freeness for abelian groups that corresponds (i.e., is equiconsistent) to ξ-stationarity?
- Take any result about stationary sets and prove it or disprove it for hyperstationary sets (assuming appropriate large cardinals).